Julia 是个灵活的动态语言,适合科学和数值计算,性能可与传统静态类型语言媲美。 由于 Julia 的编译器与像 Python 或者 R 语言的解释器不同,你可能首先会发现 Julia 的性能并不那么直观。如果你发现哪些地方比较慢, 我们强烈建议你在做任何尝试之前通读一下代码性能优化章节。一旦你明白了 Julia 是如何工作的,你就可以写出来速度媲美 C 语言的代码。 通过...
为了方便学习Python语言,基于Jupyter技术栈搭建了在线计算环境。 用户使用时以网页形式打开,对照书中内容进行学习,在线编写代码和运行代码,代码的运行结果也会直接显示。如在编程过程中需要编写说明文档,可在同一个页面直接编写,便于作及时的说明和解释。
在数据科学、机器学习及深度学习的领域里,Jupyter是一个强大的工具,它集成了代码编写、可视化展示、文档记录等多种功能于一体,让科学计算变得既直观又高效。 随着数据科学和人工智能领域的不断发展,Jupyter 也在不断更新和完善其功能和性 能。 未来可以期待看到更多创新的特性和工具被加入到 Jupyter 中,从而进一步推动科学计算和数据分析的发展。