Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame和Panel,遵循类似惯例迭代对象的键。
简而言之,基本迭代(对于i在对象中)产生 -
- Series - 值
- DataFrame - 列标签
- Pannel - 项目标签
import pandas as pd
import numpy as np
N=20
df = pd.DataFrame({
'A': pd.date_range(start='2016-01-01',periods=N,freq='D'),
'x': np.linspace(0,stop=N-1,num=N),
'y': np.random.rand(N),
'C': np.random.choice(['Low','Medium','High'],N).tolist(),
'D': np.random.normal(100, 10, size=(N)).tolist()
})
for col in df:
print (col)
A x y C D
要遍历数据帧(DataFrame)中的行,可以使用以下函数 -
iteritems() - 迭代(key,value)对
iterrows() - 将行迭代为(索引,系列)对
itertuples() - 以namedtuples的形式迭代行
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns=['col1','col2','col3'])
for key, value in df.items():
print(key, value)
col1 0 0.168010 1 -0.031993 2 -0.822273 3 -1.472904 Name: col1, dtype: float64 col2 0 -0.338577 1 0.873005 2 -1.067504 3 0.183105 Name: col2, dtype: float64 col3 0 -0.204797 1 -0.118846 2 -0.969944 3 -0.099626 Name: col3, dtype: float64
观察一下,单独迭代每个列作为系列中的键值对。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row_index,row in df.iterrows():
print (row_index,row)
0 col1 0.016488 col2 -0.291669 col3 -0.460379 Name: 0, dtype: float64 1 col1 0.156145 col2 -0.837233 col3 1.221514 Name: 1, dtype: float64 2 col1 1.704913 col2 -2.167250 col3 -2.232846 Name: 2, dtype: float64 3 col1 -0.369852 col2 -0.184922 col3 -1.420457 Name: 3, dtype: float64
注意 - 由于iterrows()遍历行,因此不会跨该行保留数据类型。0,1,2是行索引,col1,col2,col3是列索引。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for row in df.itertuples():
print (row)
Pandas(Index=0, col1=0.9100641208898812, col2=-0.14030420418613462, col3=1.3794759830781707) Pandas(Index=1, col1=0.15200009141365656, col2=0.29516292683871204, col3=0.4231112120749035) Pandas(Index=2, col1=-0.12827376247061678, col2=0.4217373597352337, col3=-0.07613481779768569) Pandas(Index=3, col1=-2.5153461967711452, col2=1.206067891510618, col3=0.623008282642656)
注意 - 不要尝试在迭代时修改任何对象。迭代是用于读取,迭代器返回原始对象(视图)的副本,因此更改将不会反映在原始对象上。
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(4,3),columns = ['col1','col2','col3'])
for index, row in df.iterrows():
row['a'] = 10
print (df)
col1 col2 col3 0 -0.650678 0.705913 0.711489 1 -0.331735 0.111004 0.306103 2 1.466278 -1.239143 0.465077 3 -0.188902 -0.585150 0.318569
注意观察结果,修改变化并未反映出来。