Pandas I/O API是一套像pd.read_csv()一样返回Pandas对象的顶级读取器函数。
读取文本文件(或平面文件)的两个主要功能是read_csv()和read_table()。它们都使用相同的解析代码来智能地将表格数据转换为DataFrame对象 -
pandas.read_csv(filepath_or_buffer, sep=',', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)
形式2-
pandas.read_csv(filepath_or_buffer, sep='\t', delimiter=None, header='infer',
names=None, index_col=None, usecols=None)
以下是csv文件数据的内容 -
S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900
将这些数据保存为temp.csv并对其进行操作。
S.No,Name,Age,City,Salary
1,Tom,28,Toronto,20000
2,Lee,32,HongKong,3000
3,Steven,43,Bay Area,8300
4,Ram,38,Hyderabad,3900
import pandas as pd
df=pd.read_csv("temp.csv")
print (df)
S.No Name Age City Salary 0 1 Tom 28 Toronto 20000 1 2 Lee 32 HongKong 3000 2 3 Steven 43 Bay Area 8300 3 4 Ram 38 Hyderabad 3900
import pandas as pd
df=pd.read_csv("temp.csv",index_col=['S.No'])
print (df)
Name Age City Salary S.No 1 Tom 28 Toronto 20000 2 Lee 32 HongKong 3000 3 Steven 43 Bay Area 8300 4 Ram 38 Hyderabad 3900
import pandas as pd
import numpy as np
df = pd.read_csv("temp.csv", dtype={'Salary': np.float64})
print (df.dtypes)
S.No int64 Name object Age int64 City object Salary float64 dtype: object
默认情况下,Salary列的dtype是int,但结果显示为float,因为我们明确地转换了类型。
因此,数据看起来像浮点数 -
S.No Name Age City Salary
0 1 Tom 28 Toronto 20000.0
1 2 Lee 32 HongKong 3000.0
2 3 Steven 43 Bay Area 8300.0
3 4 Ram 38 Hyderabad 3900.0
import pandas as pd
import numpy as np
df=pd.read_csv("temp.csv", names=['a', 'b', 'c','d','e'])
print (df)
a b c d e 0 S.No Name Age City Salary 1 1 Tom 28 Toronto 20000 2 2 Lee 32 HongKong 3000 3 3 Steven 43 Bay Area 8300 4 4 Ram 38 Hyderabad 3900
观察可以看到,标题名称附加了自定义名称,但文件中的标题还没有被消除。 现在,使用header参数来删除它。
如果标题不是第一行,则将行号传递给标题。这将跳过前面的行。
import pandas as pd
import numpy as np
df=pd.read_csv("temp.csv",names=['a','b','c','d','e'],header=0)
print (df)
a b c d e 0 1 Tom 28 Toronto 20000 1 2 Lee 32 HongKong 3000 2 3 Steven 43 Bay Area 8300 3 4 Ram 38 Hyderabad 3900
import pandas as pd
import numpy as np
df=pd.read_csv("temp.csv", skiprows=2)
print (df)
2 Lee 32 HongKong 3000 0 3 Steven 43 Bay Area 8300 1 4 Ram 38 Hyderabad 3900