任何分组(groupby)操作都涉及原始对象的以下操作之一。它们是:
- 分割对象
- 应用一个函数
- 结合的结果
在许多情况下,将数据分成多个集合,并在每个子集上应用一些函数。在应用函数中,可以执行以下操作:
- 聚合 - 计算汇总统计量
- 转换 - 执行一些特定于组的操作
- 过滤 - 在某些情况下丢弃数据
下面来创建一个DataFrame对象并对其执行所有操作:
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df)
Team Rank Year Points 0 Riders 1 2014 876 1 Riders 2 2015 789 2 Devils 2 2014 863 3 Devils 3 2015 673 4 Kings 3 2014 741 5 kings 4 2015 812 6 Kings 1 2016 756 7 Kings 1 2017 788 8 Riders 2 2016 694 9 Royals 4 2014 701 10 Royals 1 2015 804 11 Riders 2 2017 690
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df.groupby('Team'))
<pandas.core.groupby.generic.DataFrameGroupBy object at 0x7fa8bc4477d0>
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017], 'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df.groupby('Team').groups)
{'Devils': [2, 3], 'Kings': [4, 6, 7], 'Riders': [0, 1, 8, 11], 'Royals': [9, 10], 'kings': [5]}
按多列分组:
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
print (df.groupby(['Team','Year']).groups)
{('Devils', 2014): [2], ('Devils', 2015): [3], ('Kings', 2014): [4], ('Kings', 2016): [6], ('Kings', 2017): [7], ('Riders', 2014): [0], ('Riders', 2015): [1], ('Riders', 2016): [8], ('Riders', 2017): [11], ('Royals', 2014): [9], ('Royals', 2015): [10], ('kings', 2015): [5]}
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
for name,group in grouped:
print (name)
print (group)
2014 Team Rank Year Points 0 Riders 1 2014 876 2 Devils 2 2014 863 4 Kings 3 2014 741 9 Royals 4 2014 701 2015 Team Rank Year Points 1 Riders 2 2015 789 3 Devils 3 2015 673 5 kings 4 2015 812 10 Royals 1 2015 804 2016 Team Rank Year Points 6 Kings 1 2016 756 8 Riders 2 2016 694 2017 Team Rank Year Points 7 Kings 1 2017 788 11 Riders 2 2017 690
默认情况下,groupby
对象具有与分组名相同的标签名称。
import pandas as pd
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
print (grouped.get_group(2014))
Team Rank Year Points 0 Riders 1 2014 876 2 Devils 2 2014 863 4 Kings 3 2014 741 9 Royals 4 2014 701
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Year')
print (grouped['Points'].agg(np.mean))
Year 2014 795.25 2015 769.50 2016 725.00 2017 739.00 Name: Points, dtype: float64
/tmp/ipykernel_1578/445005377.py:1: FutureWarning: The provided callable <function mean at 0x7fa9082fdda0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead. print (grouped['Points'].agg(np.mean))
另一种查看每个分组的大小的方法是应用 size()
函数:
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
print (grouped.agg(np.size))
Rank Year Points Team Devils 2 2 2 Kings 3 3 3 Riders 4 4 4 Royals 2 2 2 kings 1 1 1
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
agg = grouped['Points'].agg([np.sum, np.mean, np.std])
/tmp/ipykernel_1578/1839800803.py:2: FutureWarning: The provided callable <function sum at 0x7fa9082fc9a0> is currently using SeriesGroupBy.sum. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "sum" instead. agg = grouped['Points'].agg([np.sum, np.mean, np.std]) /tmp/ipykernel_1578/1839800803.py:2: FutureWarning: The provided callable <function mean at 0x7fa9082fdda0> is currently using SeriesGroupBy.mean. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "mean" instead. agg = grouped['Points'].agg([np.sum, np.mean, np.std]) /tmp/ipykernel_1578/1839800803.py:2: FutureWarning: The provided callable <function std at 0x7fa9082fdee0> is currently using SeriesGroupBy.std. In a future version of pandas, the provided callable will be used directly. To keep current behavior pass the string "std" instead. agg = grouped['Points'].agg([np.sum, np.mean, np.std])
print (agg)
sum mean std Team Devils 1536 768.000000 134.350288 Kings 2285 761.666667 24.006943 Riders 3049 762.250000 88.567771 Royals 1505 752.500000 72.831998 kings 812 812.000000 NaN
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
grouped = df.groupby('Team')
score = lambda x: (x - x.mean()) / x.std()*10
print (grouped.transform(score))
Rank Year Points 0 -15.000000 -11.618950 12.843272 1 5.000000 -3.872983 3.020286 2 -7.071068 -7.071068 7.071068 3 7.071068 7.071068 -7.071068 4 11.547005 -10.910895 -8.608621 5 NaN NaN NaN 6 -5.773503 2.182179 -2.360428 7 -5.773503 8.728716 10.969049 8 5.000000 3.872983 -7.705963 9 7.071068 -7.071068 -7.071068 10 -7.071068 7.071068 7.071068 11 5.000000 11.618950 -8.157595
import pandas as pd
import numpy as np
ipl_data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}
df = pd.DataFrame(ipl_data)
filter = df.groupby('Team').filter(lambda x: len(x) >= 3)
print (filter)
Team Rank Year Points 0 Riders 1 2014 876 1 Riders 2 2015 789 4 Kings 3 2014 741 6 Kings 1 2016 756 7 Kings 1 2017 788 8 Riders 2 2016 694 11 Riders 2 2017 690
在上述过滤条件中,要求返回参加过 3 次或以上 IPL 的团队。